Securing a Multiprocessor KVM
Hypervisor with & Rust (socc ‘24)

Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, Jan-Ting Tu @ National Taiwan University

paper slides created by Yulong Han @ Peking University

Background: Rust programming language

low-level programming with no GC(Garbage Collection)

emphasizing performance, type-safety and concurrency

 ownership model:
* one value can only have one owner
 reference can borrow the value as mutable/immutable

 immutable references can have many, but only one mutable
reference should exist

variable lifetime check and notation

* fearless concurrency in [std] environment

1. fn main() {

2. let sl = String::from("Hello, Rust!");
3. let s2 = sl;
4. // println!("{}", sl); // ERROR: sl is no longer valid

variable is immutable by default

1. fn main() {

2. let sl = String::from("Hello, Rust!");

3. let s2 = sl;

4. // println!("{}", sl); // ERROR: sl is no longer valid
5.

6. let s3 = &s2; // Borrow s2

7. println! ("Immutable reference: {}", s3);

one variable can have multiple immutable references =

1. fn main() {

2. let sl = String::from("Hello, Rust!");

3. let s2 = sl;

4. // println!("{}", sl); // ERROR: sl is no longer valid
5.

6. let s3 = &s2; // Borrow s2

7. println! ("Immutable reference: {}", s3);
8.

9. let mut s4 = String::from("Mutable Rust");
10. let s5 = &mut s4;

11. s5.push str(" is cool!");

12. println! ("Mutable reference: {}", s5);

only one mutable referece should exist (even s4 is invalid after s5)

= &

1. fn main() {

2. let sl = String::from("Hello, Rust!");

3. let s2 = sl;

4. // println!("{}", sl); // ERROR: sl is no longer valid

5.

6. let s3 = &s2; // Borrow s2

7. println! ("Immutable reference: {}", s3);

8.

9. let mut s4 = String::from("Mutable Rust");

10. let s5 = &mut s4;

11. s5.push str(" is cool!");

12. println! ("Mutable reference: {}", s5);

13. .

14. let s6 = takes and gives back(s2); =[e.] functions take and return ownership
15. println! ("After function: {}", s6);

16. }

17.

18. fn takes and gives back(s: String) -> String { Standard Output
19. println! ("Taking ownership of: {}", s);

~ Immutable reference: Hello, Rust!
20. s [e°]= Mutable reference: Mutable Rust 1is cool!
21. } Taking ownership of: Hello, Rust!

After function: Hello, Rust!

one more thing: Rust traits

name: String, w

1. trait Greet { N
2. fn greet(&self) -> String; &
3.}

4.

5. struct Person { J

6.

7.

one more thing: Rust traits

10.

12.
13.
14.
15.
l6.
17.
18.
19.
20.

O 0 ~J o L1 b W N K=

trait Greet { N
fn greet(&self) -> String; *

}

struct Person { J
name: String, w

}

impl Greet for Person {
fn greet(&self) -> String {

N

S 7,
&
]

format! ("Hello, {}!", self.name

}
}
fn main() { Alice
let person = Person { @
name: String::from("Alice"),

}i *

o
println!("{}", person.greet()); %}\\ Hello, Alice!

Background: System Virtualization and Hypervisors

e System virtualization: provides multiple virtual hardware on a single hardware

* Key implementations:
e CPU virtualization: vCPU
* Memory virtualization: memory isolation between virtual machines(VMs)
* 1/0 virtualization: pass-through, virtio, ...

* Hypervisors(Virtual Machine Monitors, VMMs): mEl Vicosof
Mern o Hyper-v

* the software that provides the virtual HAL for VMs
* Type-1 hypervisors (bare-metal)

* Xen, Hyper-V ~:;]
* Type-2 hypervisors (as OS applications)

* VMware Workstation, Virtualbox

Background: KVM (Kernel-based Virtual Machine)

@
Part of the Linux kernel (built-in or as kernel modules) %ﬂ/\)ﬁKv M

Implemented by each architecture’s code(x86, armé4, riscy, ...)
« KVM uses ISA’s virtualization extension(VT-x, ARM’s virtualization extension, RISCV’s H extension)

* KVM uses linux’s scheduler to run VMs’ vCPUs as Linux processes

ARMG64’s privilege levels:

* ELO: apps
* EL1:0so0orVMos
* EL2: hypervisors ELO:User Host User | Qemu Guest User
* EL3: secure monitor I
* Highvisor/Lowvisor on ARM64°’s KVM:
. AT
* highvisor runsin EL1 and take advantage of Linux’s kernel ELiKerne! (Reods Highvisor Guest 05
* lowvisorrunsin EL2 as a hypervisor I T "_""""'""T' __________
* in userspace, QEMU is used to interact with KVM . Lowvisor |4 Trap
-yp

Challenge1: problems of Mutex in Rust

 std::sync::Mutex(std), spin::Mutex(no_std)

* self-deadlocks
* lock(A)
. // maybe later or in another function
(3}1°Ck(A) // waits forever!

* lock ordering problems

e CPUO: lock(A) ... lock(B) // wait for CPU1
* CPUl: lock(B) ... lock(A) // wait for CPU®

Challenge 2: raw pointers in unsafe Rust

* unsafe is common in low level Rust system programming:
* pagetable walking
 memory allocation

atomic instructions/inline asm

* memory-mapped I/0

* can we wrap the raw pointers to safely access physical memory regions?

Cha"enge 3: blg TCB(Trusted Computing Base) of KVM

* attackers can exploit bugs in KVM and Linux kernel to steal precious data
from VMs.

* since KVM uses Linux kernel functionality like scheduling vCPUs, the TCB
Is the whole kernel.

.

oV

KrustVM: KVM, but with a new Rust code core

Contributions
* designed KMutex to avoid self-deadlocks and ensure lock ordering

* designed Safe Pointers to guard raw pointer accesses

* rewrite KVM as KrustVM with some functionality in Rust as TCB (hamed Rcore)

VM Host i oztgd VM
Host A A [Host A h ()
" QEMU | _ Aeps [emu | | Apps
~ - N¥* T
HOSt Linux Guest Kernel EL1 | Host Linux Guest Kernel
Kernel % Kernel
¥) VM protection
[KVM Iowwsor J EL2 ” Rcore |

KVM/Arm KrustVM

KMutex

 avoid self-deadlocks

impl<T: ?Sized> KMutex<T> {
pub fn lock(&mut self)->Guard<' ,Self>{...}

}

« &mut will force Rust compiler to check if the Guard has not been dropped,
Nno one can access KMutex

* this is because in Rust there can only exist one mutable reference in the
variable’s lifetime.

KMutex(cont’)

force lock ordering

manually designed a lock order graph for all Rcore types

use trait CanGet* for ordering, for example:

* LEntry, VM info, PMEM info will be implemented CanGetS2PTInfo trait
the graph has no loop, so all locks will be forced in order

| l

*{ LEntry VM info H SMMU info 1

‘ PMEM info S2PT info 1 4[SMMUPT info 1
|

Figure: the order of getting locks

https://quinedot.github.io/rust-learning/st-reborrow.html
https://github.com/rust-lang/reference/issues/788

pub unsafe trait CanGetA

{1

// SAFETY: We've manually verified the order
unsafe impl CanGetA for B {}

pub fn get_a<T:CanGetA> (_:&mut T)->&mut KMutex<A>{...}

fn foo(ref_b: &mut KMutex) ({

let mut b = ref_b.lock

O; b: &mut B

/* b Iin the following line gets converted to

"¢smut «b" by the com

niler «

let ref_a = get_a(b);

/% this does not compi

because ref a's lifetime is not over x/

let ref_c = get_c(b);

let mut a = ref_a.lock
a.do_a_work () ;

reborrowed here [line 12] as anonymous &mut
and should live as long as ref_a [line 12-19]

0;

22
23

// we can use b after this B requests lock first,

b.do_b_work () ;
}

but can only be used after anonymous &mut
of B(by ref_a) is dead ©

https://quinedot.github.io/rust-learning/st-reborrow.html
https://github.com/rust-lang/reference/issues/788

Safe Pointers

* partition physical memory as regions
* manually define Pointers for these regions with range check

1 impl GenericPhysRegion {
2 pub fn new(start_addr: usize, size: usize) ->
— Option<Self> {

l— Rcore Area —| 3 let end = start_addr + size;
4 overlap check
5 if (end > RCORE_AREA_START &&
Page 6 RCORE_AREA_END > start_addr) || range check
Rcore Metadata | Table SMMU 7 (end > SMMU_AREA_START &&
Pool 8 SMMU_AREA_END > start_addr) {
9 None
10 T
physical address space 11 Some (Self { start_addr, size })
12 }
13 }
14
15 // returns a mutable "u8’ slice for the caller
Generic Area, access bounded Rcore Metadata, access via RGFs, 16 // to access generic area memory
by GenericPhysRegion type data race free and deadlock free 17 pub fn as_slice(&self) -> &'static mut [u8] {
18 // convert the physical address to the virtual
= address
19 let va = pa_to_va(self.start_addr); .
SMMU Area, access bounded Rcore Page Table Pool, access bounded 20 unsafe { Reore uses u§ slice
bv SMMUReaq(t by PTEAddr type 21 core::slice::from_raw_parts_mut (to access this memory
y egion type 22 va as *mut u8, self.size,

23)
24 }

25 }

26 }

KVM host is untrustable

* Rcore unmap itself, all VM’s S2PT and host’s S2PT from host

 S2PT(Stage-2 Pagetables) translate VM’s guest Physical Address to real Physical Address
* used for memory isolation

we don’t tryst.K\MM. s host so we force it uses trap-in to prevent direct
physical cess (makingit-a//M”)

Address Space Physical Address Space

[J
—I
=
o)
@
®
#‘
o
o
o
<
<] :
5]
—
(D)

Q

ts with Rcore with Hypercalls

Translatloq: U DER

O M al machines’ OS 13 S 10, hy Bervisor oOR

UFers age \QS / Stage 2 \
joot im :;X\leli“ifei"éat% by Ed25519algorithm

Flash

Rcore supp@

SRAM
ROM

Evalution

* benchmarks: hackbench, netperf, ApacheBench, memcached, redis

* Comparable to KVM with max 10% overhead

higher value means higher overhead
KrustVM is , KVM is purple

mainline
[HypSec-5.15
KrustVM ===

OFNWAUIOO N WU ~I00WN)

OOOOOO000 IR

(results are normalized to bare-metal performance)

Figure 4: Application Benchmark Performance.

My commments on the paper

* reminder of previous paper presentation:
DRust: Language-Guided Distributed Shared Memory with Fine Granularity, Full
Transparency, and Ultra Efficiency

* KrustVM and DRust both take advantage of Rust:

* Leveraging Rust’s ownership and lifetime check for (distributed) system programming
* and more?

* KrustVM’s Rcore uses a formal verification tool to verify part of its code:
* Formal verification has become more and more important for system software

Thanks for Watching

paper slides created by Yulong Han @ Peking University

	Slide 1: Securing a Multiprocessor KVM Hypervisor with Rust (SoCC ‘24)
	Slide 2: Background: Rust programming language
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Background: System Virtualization and Hypervisors
	Slide 10: Background: KVM (Kernel-based Virtual Machine)
	Slide 11: Challenge 1: problems of Mutex in Rust
	Slide 12: Challenge 2: raw pointers in unsafe Rust
	Slide 13: Challenge 3: big TCB(Trusted Computing Base) of KVM
	Slide 14: KrustVM: KVM, but with a new Rust code core
	Slide 15
	Slide 16: KMutex(cont’)
	Slide 17: Safe Pointers
	Slide 18: KVM host is untrustable
	Slide 19: Evalution
	Slide 20: My comments on the paper
	Slide 21: Thanks for Watching

