
Securing a Multiprocessor KVM
Hypervisor with Rust (SoCC ‘24)

Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, Jan-Ting Tu @ National Taiwan University

paper slides created by Yulong Han @ Peking University

Background: Rust programming language

• low-level programming with no GC(Garbage Collection)
• emphasizing performance, type-safety and concurrency
• ownership model:

• one value can only have one owner
• reference can borrow the value as mutable/immutable
• immutable references can have many, but only one mutable

reference should exist

• variable lifetime check and notation
• fearless concurrency in [std] environment

variable is immutable by default

one variable can have multiple immutable references

...

only one mutable referece should exist (even s4 is invalid after s5)

functions take and return ownership

one more thing: Rust traits

one more thing: Rust traits

Alice

Background: System Virtualization and Hypervisors

• System virtualization: provides multiple virtual hardware on a single hardware
• Key implementations:

• CPU virtualization: vCPU
• Memory virtualization: memory isolation between virtual machines(VMs)
• I/O virtualization: pass-through, virtio, ...

• Hypervisors(Virtual Machine Monitors, VMMs):
• the software that provides the virtual HAL for VMs
• Type-1 hypervisors (bare-metal)

• Xen, Hyper-V

• Type-2 hypervisors (as OS applications)
• VMware Workstation, Virtualbox

Background: KVM (Kernel-based Virtual Machine)

• Part of the Linux kernel (built-in or as kernel modules)
• Implemented by each architecture’s code(x86, arm64, riscv, ...)

• KVM uses ISA’s virtualization extension(VT-x, ARM’s virtualization extension, RISCV’s H extension)
• KVM uses linux’s scheduler to run VMs’ vCPUs as Linux processes

• ARM64’s privilege levels:
• EL0 : apps
• EL1 : os or VM os
• EL2 : hypervisors
• EL3 : secure monitor

• Highvisor/Lowvisor on ARM64’s KVM:
• highvisor runs in EL1 and take advantage of Linux’s kernel
• lowvisor runs in EL2 as a hypervisor

• in userspace, QEMU is used to interact with KVM

Challenge 1: problems of Mutex in Rust

• std::sync::Mutex(std), spin::Mutex(no_std)

• self-deadlocks
• lock(A)

• ... // maybe later or in another function

• lock(A) // waits forever!

• lock ordering problems
• CPU0: lock(A) ... lock(B) // wait for CPU1

• CPU1: lock(B) ... lock(A) // wait for CPU0

Challenge 2: raw pointers in unsafe Rust

• unsafe is common in low level Rust system programming:
• pagetable walking

• memory allocation

• atomic instructions/inline asm

• memory-mapped I/O

• ...

• can we wrap the raw pointers to safely access physical memory regions?

Challenge 3: big TCB(Trusted Computing Base) of KVM

• attackers can exploit bugs in KVM and Linux kernel to steal precious data
from VMs.

• since KVM uses Linux kernel functionality like scheduling vCPUs, the TCB
is the whole kernel.

KrustVM: KVM, but with a new Rust code core

Contributions
• designed KMutex to avoid self-deadlocks and ensure lock ordering

• designed Safe Pointers to guard raw pointer accesses

• rewrite KVM as KrustVM with some functionality in Rust as TCB (named Rcore)

• avoid self-deadlocks

impl<T: ?Sized> KMutex<T> {

pub fn lock(&mut self)->Guard<'_,Self>{...}

}

• &mut will force Rust compiler to check if the Guard has not been dropped,
no one can access KMutex

• this is because in Rust there can only exist one mutable reference in the
variable’s lifetime.

KMutex

KMutex(cont’)
• force lock ordering
• manually designed a lock order graph for all Rcore types
• use trait CanGet* for ordering, for example:

• LEntry, VM info, PMEM info will be implemented CanGetS2PTInfo trait
• the graph has no loop, so all locks will be forced in order

b: &mut B

reborrowed here [line 12] as anonymous &mut
and should live as long as ref_a [line 12-19]

B requests lock first,
but can only be used after anonymous &mut
of B(by ref_a) is dead ☺

Figure: the order of getting locks

1. https://quinedot.github.io/rust-learning/st-reborrow.html
2. https://github.com/rust-lang/reference/issues/788

https://quinedot.github.io/rust-learning/st-reborrow.html
https://github.com/rust-lang/reference/issues/788

Safe Pointers

• partition physical memory as regions
• manually define Pointers for these regions with range check

range check

Rcore uses u8 slice
to access this memory

KVM host is untrustable

• Rcore unmap itself, all VM’s S2PT and host’s S2PT from host
• S2PT(Stage-2 Pagetables) translate VM’s guest Physical Address to real Physical Address
• used for memory isolation

• we don’t trust KVM’s host so we force it uses trap-in to prevent direct
physical memory access (making it a “VM”)

• Therefore, KVM interacts with Rcore with Hypercalls
• hypercalls are requests from virtual machines’ OS to hypervisor
• just like syscalls from userspace to OS

• Rcore supports VM boot image verification by Ed25519 algorithm

Evalution

• benchmarks: hackbench, netperf, ApacheBench, memcached, redis
• Comparable to KVM with max 10% overhead

higher value means higher overhead
KrustVM is blue, KVM is purple

My comments on the paper

• reminder of previous paper presentation:
DRust: Language-Guided Distributed Shared Memory with Fine Granularity, Full
Transparency, and Ultra Efficiency

• KrustVM and DRust both take advantage of Rust:
• Leveraging Rust’s ownership and lifetime check for (distributed) system programming
• and more?

• KrustVM’s Rcore uses a formal verification tool to verify part of its code:
• Formal verification has become more and more important for system software

Thanks for Watching

paper slides created by Yulong Han @ Peking University

	Slide 1: Securing a Multiprocessor KVM Hypervisor with Rust (SoCC ‘24)
	Slide 2: Background: Rust programming language
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Background: System Virtualization and Hypervisors
	Slide 10: Background: KVM (Kernel-based Virtual Machine)
	Slide 11: Challenge 1: problems of Mutex in Rust
	Slide 12: Challenge 2: raw pointers in unsafe Rust
	Slide 13: Challenge 3: big TCB(Trusted Computing Base) of KVM
	Slide 14: KrustVM: KVM, but with a new Rust code core
	Slide 15
	Slide 16: KMutex(cont’)
	Slide 17: Safe Pointers
	Slide 18: KVM host is untrustable
	Slide 19: Evalution
	Slide 20: My comments on the paper
	Slide 21: Thanks for Watching

